
On Task Aware Compression:
Common Information Dimension and
Contextual Bandit Learning

Osama A. Hanna, Christina Fragouli

01
Common Information Dimension

Hanna, Osama, Xinlin Li, Suhas Diggavi, and Christina Fragouli. “Common Information Dimension." ISIT 2023.

Applications

Key generation in
Cryptography Hypothesis testing Multi-modal

representation learning

Common Information: Wyner

CWyner(X1, X2) := min
PWPX1|WPX2|W:PX1X2

=πX1X2

I(X1, X2; W)

A. Wyner, “The common information of two dependent random variables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 163–179, 1975.

X1, X2 : random vectors (sources)
W : common randomness

Common Information: Wyner

CWyner(X1, X2) := min
PWPX1|WPX2|W:PX1X2

=πX1X2

I(X1, X2; W)

A. Wyner, “The common information of two dependent random variables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 163–179, 1975.

• Can be generalized to sourcesn

Common Information: Wyner

W

𝑋2 𝑋𝑛

…

…

 𝑃𝑋1|𝑊 𝑃𝑋2|𝑊 𝑃𝑋n|𝑊

𝑋1

• Multiple interpretations, e.g., 
 distributed simulation

CWyner(X1, X2) := min
PWPX1|WPX2|W:PX1X2

=πX1X2

I(X1, X2; W)

A. Wyner, “The common information of two dependent random variables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 163–179, 1975.

• Can be generalized to sourcesn

Common Information: Common Entropy

CExact(X1, X2) := min
PWPX1|WPX2|W:PX1X2

=πX1X2

H(W)

G. R. Kumar, C. T. Li, and A. El Gamal, “Exact common information,” in 2014 IEEE International Symposium on Information Theory. IEEE, 2014, pp.
161–165.

W

𝑋2 𝑋𝑛

…

…

 𝑃𝑋1|𝑊 𝑃𝑋2|𝑊 𝑃𝑋n|𝑊

𝑋1

• one shot

• exact distributed simulation

P. Gács and J. Körner, “Common information is far less than mutual information,” Problems of Control and Information Theory, vol. 2, no. 2, pp. 149–
162, 1973.

Common Information: Gacs-Korner

CGK(X1, X2) := max
f,g:f(X1)=g(X2)

H(f(X1))

• distributed randomness extraction

Common Information Can be Infinite?

• , and almost surely

‣

X1, X2 ∈ ℝ X1 ∼ 𝒩(0,1) X1 = X2

C(X1, X2) = ∞

Common Information Can be Infinite?

• , and almost surely

‣

X1, X2 ∈ ℝ X1 ∼ 𝒩(0,1) X1 = X2

C(X1, X2) = ∞

• What if ?

‣

X1, X2 ∈ ℝ100

C(X1, X2) = ∞

Common Information Can be Infinite?

• , and almost surely

‣

X1, X2 ∈ ℝ X1 ∼ 𝒩(0,1) X1 = X2

C(X1, X2) = ∞

• What if ?

‣

X1, X2 ∈ ℝ100

C(X1, X2) = ∞

How to measure the different complexities for the above cases?

Common Information Dimension (CID)

d(X1, X2) = min{dW |W ∈ 𝒲}

𝒲 = {W ∈ ℝdW | ∃g : (X1, X2) ↦ W, X1 ⊥⊥ X2 |W}

(First Attempt):

X1 ⊥⊥ X2 |W : X1, X2 conditionally independent given W

dW : #coordinates

X1, X2 : random vectors

W : common randomness (vector)

Common Information Dimension (CID)

Issue: , ∃f : ℝ ↔ ℝn d(X1, X2) = 1 ⚠

X1 ⊥⊥ X2 |W : X1, X2 conditionally independent given W

X1, X2, W : vectors

dW : #coordinates

d(X1, X2) = min{dW |W ∈ 𝒲}

𝒲 = {W ∈ ℝdW | ∃g : (X1, X2) ↦ W, X1 ⊥⊥ X2 |W}

(First Attempt):

Common Information Dimension (CID)

dℱ(X1, X2) = min{dW |W ∈ 𝒲ℱ}

𝒲ℱ = {W | ∃g : (X1, X2) ↦ W, X1 ⊥⊥ X2 |W, g ∈ ℱ}

X1 ⊥⊥ X2 |W : X1, X2 conditionally independent given W

X1, X2, W : vectors

dW : #coordinates

Common Information Dimension (CID)

dW : #coordinates

dℱ(X1, X2) = min{dW |W ∈ 𝒲ℱ}

𝒲ℱ = {W | ∃V, g : (X1, X2) ↦ W, X1 ⊥⊥ X2 | (V, W), g ∈ ℱ, H(V) < ∞}

Definition (CID):

Renyi Common Information Dimension (RCID)

dR(W) = lim
m→∞

H(⟨W⟩m)
log m

W : vector, ⟨Wi⟩m =
⌊mWi⌋

m

Rényi Dimension:

Definition (RCID):

dℱ(X1, X2) = min{dR(W) |W ∈ 𝒲ℱ}

Renyi Common Information Dimension (RCID)

dR(W) = lim
m→∞

H(⟨W⟩m)
log m

W : vector, ⟨Wi⟩m =
⌊mWi⌋

m

Rényi Dimension:

Gacs-Korner Common Information Dimension (GKCID)

Definition (GKCID):

dGK
ℱ (X1, X2) = sup

W=f1(X1)=f2(X2),fi∈ℱ
dR(W)

Gacs-Korner Common Information Dimension (GKCID)

Definition (GKCID):

dGK
ℱ (X1, X2) = sup

W=f1(X1)=f2(X2),fi∈ℱ
dR(W)

Question: How to compute CID, RCID, GKCID?

CID for Gaussian Sources

•

•

X1, X2 ∼ 𝒩(μ, ΣX1,X2
)

ℱ = {f : ℝdX1
+dX2 → dW | f(X1, X2) = A[X1 X2]⊤ for some matrix A}

Assumptions

X1, X2, W : vectors

CID for Two Gaussian Sources

Theorem:

If is a jointly Gaussian random vector, is the class of linear function[X1, X2] ℱ

dℱ(X1, X2) = rank(ΣX1
)+rank(ΣX2

)−rank(ΣX1,X2
)

X1, X2 : vectors

dℱ(X1, X2) = min{dW |W ∈ 𝒲ℱ}

CID for Two Gaussian Sources: proof sketch

‣ WLOG assume are full rank

‣

ΣX1
, ΣX2

a⊤X1 + b⊤X2 = 0 almost surely ⟺ [a⊤b⊤]ΣX1,X2
= 0

‣ Find the null space of , namely with

• almost surely

ΣX1,X2
N = [NX1

NX2
] NΣX1,X2

= 0

NX1
X1 = − NX2

X2

CID for Two Gaussian Sources: proof sketch

Achievability

C. T. Li and A. El Gamal, “Distributed simulation of continuous random variables,” IEEE Transactions on Information Theory, vol. 63, no. 10, pp.
6329–6343, 2017.

‣ Recall:

‣ Conditioned on , effectively has full rank covariance matrix

‣ CID

N1 = − N2

W = N1 [X1, X2]

≤ dN1

N1 = NX1
X1, N2 = NX2

X2

‣ is full rank ΣX1,X2
⟹ dℱ(X1, X2) = 0

Converse

CID for Two Gaussian Sources: proof sketch

‣ is a deterministic function of every

‣ can be obtained from by a linear transformation

N1 (V, W) : X1 ⊥⊥ X2 | (V, W)

N1 W

Converse

CID for Two Gaussian Sources: proof sketch

‣ is a deterministic function of every

‣ can be obtained from by a linear transformation

N1 (V, W) : X1 ⊥⊥ X2 | (V, W)

N1 W

‣ has full rank covariance matrix

‣

N1

dW ≥ #rows of NX1

RCID, GKCID for Two Gaussian Sources

dℱ(X1, X2) = dR
ℱ(X1, X2) = dGK

ℱ (X1, X2)

X1, X2 : vectors

dR
ℱ(X1, X2) = min{dR(W) |W ∈ 𝒲ℱ}

dGK
ℱ (X1, X2) = sup

W=f1(X1)=f2(X2), fi∈ℱ
dR(W)

Theorem:

If is a jointly Gaussian random vector, is the class of linear function[X1, X2] ℱ

CID for N Gaussian Sources

If is a jointly Gaussian random vector, is class of linear function[X1, ⋯, Xn] ℱ

dℱ(X1, ⋯, Xn) =
n

∑
i=1

rank(Σ−i) − (n − 1)rank(Σ)

dℱ(X1, ⋯, Xn) = dR
ℱ(X1, ⋯, Xn) ≥ dGK

ℱ (X1, ⋯, Xn)

Theorem:

CID for N Gaussian Sources: proof sketch

Achievability

Converse

CID for N Gaussian Sources: proof sketch

Achievability

Converse

‣ Find s.t. conditioned on , the covariance matrix of is
effectively full rank

‣ Intuitively: captures the information that contains about
which do not contain

Z = [Z1, ⋯, Zn] Z X

Zi Xi Xi+1, ⋯, Xn
X1, ⋯, Xi−1

CID for N Gaussian Sources: proof sketch

Achievability

Converse

‣ Find s.t. conditioned on , the covariance matrix of is
effectively full rank

‣ Intuitively: captures the information that contains about
which do not contain

Z = [Z1, ⋯, Zn] Z X

Zi Xi Xi+1, ⋯, Xn
X1, ⋯, Xi−1

‣ is deterministic function of every Z (V, W) : X1 ⊥⊥ ⋯ ⊥⊥ Xn | (V, W)

CID for N Gaussian Sources

If is a jointly Gaussian random vector, is class of linear function[X1, ⋯, Xn] ℱ

dℱ(X1, ⋯, Xn) =
n

∑
i=1

rank(Σ−i) − (n − 1)rank(Σ)

dℱ(X1, ⋯, Xn) = dR
ℱ(X1, ⋯, Xn) ≥ dGK

ℱ (X1, ⋯, Xn)

Theorem:

Example with GKCID < CID

• and almost surely

•

X1, X2, X3 ∼ 𝒩(0,1) X1 = X2

X3 ⊥⊥ (X1, X2)

Example with GKCID < CID

• and almost surely

•

X1, X2, X3 ∼ 𝒩(0,1) X1 = X2

X3 ⊥⊥ (X1, X2)

• GKCID while CID = 0 = 1

Future Work

How to compute CID, RCID, GKCID for general distributions and
more general classes of function?

Any Questions?

02
Contextual Bandit Learning

Hanna, Osama, Lin F. Yang, and Christina Fragouli. “Contexts can be Cheap: Solving Stochastic Contextual Bandits with
Linear Bandit Algorithms.” COLT 2023.

Multi Arm Bandits
Plays an arm

Learner

Multi Arm Bandits

𝒜
Arm 1

Arm 2

Arm K

Plays an arm

Learner

Multi Arm Bandits
Receives a reward

𝒜
Arm 1

Arm 2

Arm K

Plays an arm

Learner

Multi Arm Bandits

μ1

μ2

μK

Receives a reward

𝒜
Arm 1

Arm 2

Arm K

Plays an arm

Learner

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Learner

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Arm 1

r1

t=1 t=2 t=T

(a1 = 1, r1)
Learner

at ∈ 𝒜
rt = μat

+ ηt

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Arm 1

r1

t=1 t=2 t=T

(a1 = 1, r1)

Arm 1

r2
(a2 = 1, r2)

Learner

at ∈ 𝒜
rt = μat

+ ηt

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Arm 1

r1

t=1 t=2 t=T

(a1 = 1, r1)

Arm 1

r2
(a2 = 1, r2)

rT

Arm K

Learner

at ∈ 𝒜
rt = μat

+ ηt

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Arm 1

r1

t=1 t=2 t=T

(a1 = 1, r1)

Arm 1

r2
(a2 = 1, r2)

rT

Arm K

Learner

at ∈ 𝒜
rt = μat

+ ηt

at = f(Ht)

Multi Arm Bandits
Find which arm, among a set of choices, will provide on average the best reward

Arm 1

r1

t=1 t=2 t=T

(a1 = 1, r1)

RT =
T

∑
t=1

(max
a∈𝒜

μa − μat
)

Arm 1

r2
(a2 = 1, r2)

rT

Arm K

Average Regret:

Learner

at ∈ 𝒜
rt = μat

+ ηt

at = f(Ht)

RT =
T

∑
t=1

(max
a∈𝒜

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩)

Linear Bandits

at ∈ 𝒜 ⊆ ℝd

μat
= ⟨at, θ⋆⟩, at ∈ ℝd

Reward is a linear function of an unknown coefficient vector θ⋆

rt = μat
+ ηt

Regret:

Learner

at ∈ 𝒜

rt = ⟨at, θ⋆⟩ + ηt

Context for recommender systems:
gender, age, geographical location, past behavior,….

Contextual Linear Bandits

Reward is a linear function of an unknown coefficient vector θ⋆

Learner

RT =
T

∑
t=1

(max
a∈𝒜

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩)Regret:

rt = ⟨ϕ(ct, at), θ⋆⟩ + ηt

RT =
T

∑
t=1

(max
a∈𝒜

⟨ϕ(ct, a), θ⋆⟩ − ⟨ϕ(ct, at), θ⋆⟩)

at ∈ 𝒜

Regret:

Context for recommender systems:
gender, age, geographical location, past behavior,….

Contextual Linear Bandits

Reward is a linear function of an unknown coefficient vector θ⋆

known ct, ϕ

Learner

Reward is a linear function of an unknown coefficient vector θ⋆

Context for recommender systems:
gender, age, geographical location, past behavior,….

Contextual Linear Bandits

Regret: RT =
T

∑
t=1

(max
a∈𝒜t

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩)

Learner

at ∈ 𝒜t

rt = ⟨at, θ⋆⟩ + ηt

Solving contextual linear bandits can be harder than solving linear bandits

Challenge

Context for recommender systems:
gender, age, geographical location, past behavior,….

Learner

Regret: RT =
T

∑
t=1

(max
a∈𝒜t

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩)

at ∈ 𝒜t

rt = ⟨at, θ⋆⟩ + ηt

Comparing Literature Results

C : amount of corruptionRegret bound in exp.:
W.h.p.:

BT 𝔼[RT] ≤ BT
RT ≤ BT w.p. at least 1 − 1/T

O(d T log T) w.h.p.

O(d T log T log log T) w.h.p.

Õ(d T + d1.5C) w.h.p.

Linear Contextual

Basic setup

Batched Algorithms

Adversarial corruption

Building Intuition

αt ∈ 𝒜
rt = ⟨at, θ⋆⟩ + ηt

Linear Bandits goal: estimate optimal coefficient vector θ⋆

xx
a1

a2

θ⋆

Learner

xx

Building Intuition

αt ∈ 𝒜
rt = ⟨at, θ⋆⟩ + ηt

Estimate along actions directionsθ⋆

Linear Bandits goal: estimate optimal coefficient vector θ⋆

θ⋆
θ2

θ1
a1

a2

Learner

Building Intuition

αt ∈ 𝒜
rt = ⟨at, θ⋆⟩ + ηt

Linear Bandits goal: estimate optimal coefficient vector θ⋆

Estimate along actions directionsθ⋆

θ1xx
a1

a2

Learner

Building Intuition

αt ∈ 𝒜t

rt = ⟨at, θ⋆⟩ + ηt

t = 1

Contextual Linear Bandits: directions change

xx

θ⋆

a1

a2

Learner

Building Intuition

αt ∈ 𝒜t

rt = ⟨at, θ⋆⟩ + ηt

Contextual Linear Bandits: directions change

t = 2

xx

a1

a2

θ⋆

Learner

Main result

If the context is generated from a distribution,

we can reduce Contextual Linear Bandits

to Linear Bandits

𝒜

𝒜t

Learner

Our results

For any contextual linear bandit instance I with known context distribution ,
there exists (constructively) a linear bandit instance L with the same action
dimension, and any algorithm solving L solves I with the same worst-case

regret bound as L.

𝒟

Theorem 1:

Our results

For any contextual linear bandit instance I with unknown context distribution
, there exist (constructively) linear bandit instances with

 misspecification, and any algorithm solving solves I
with the same worst-case regret bound.

𝒟 log T L1, . . . , Llog T
Õ(1/ Ti) L1, . . . , Llog T

Theorem 2:

rt = ⟨at, θ⋆⟩ + ηt

RT =
T

∑
t=1

max
a∈𝒜t

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩

• context changes with at ∈ 𝒜t : t

rt = ⟨at, θ⋆⟩ + η′ t

RT =
T

∑
t=1

max
a∈𝒳

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩

• fixed at ∈ 𝒳 : ∀t

Instead of solving Reduce to

Reduction
Use a Linear Bandit Algorithm to learn the optimal for the Contextual Banditθ⋆

rt = ⟨at, θ⋆⟩ + ηt

RT =
T

∑
t=1

max
a∈𝒜t

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩

• context changes with at ∈ 𝒜t : t

rt = ⟨at, θ⋆⟩ + η′ t

RT =
T

∑
t=1

max
a∈𝒳

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩

• fixed at ∈ 𝒳 : ∀t

Instead of solving Reduce to

Reduction
 We will use any standard LB algorithm

 (say Alg) to approximate with action set θ⋆ 𝒳

g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

𝒳 = {g(θ) |θ ∈ Θ}

How to create the set of actions 𝒳
Reduction for known distribution

Assume two sets of actions

Example g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

a1

a2

θ1

a1

a2

θ1

With probability 1/2 With probability 1/2

Θ = {θ1, θ2}

θ2 θ2

Assume two sets of actions

Example g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

a1

a2

θ1

a1

a2

θ1

With probability 1/2 With probability 1/2

Θ = {θ1, θ2}

With probability 1/2 With probability 1/2

θ1
g(θ1)

g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ
Assume two sets of actions

Example

a1

a2

θ1

a1

a2

θ1

Θ = {θ1, θ2}

Assume two sets of actions

Example g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

With probability 1/2 With probability 1/2

a1

a2

a1

a2

θ2 θ2

Θ = {θ1, θ2}

Assume two sets of actions

Example g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

With probability 1/2 With probability 1/2

g(θ2) θ2

a1

a2

a1

a2

θ2
θ2

Θ = {θ1, θ2}

Assume two sets of actions

Example g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

Θ = {θ1, θ2}

𝒳 = {g(θ1), g(θ2)}

θ1
g(θ1)

g(θ2) θ2

g(θ) = 𝔼𝒜t∼𝒟[arg max
a∈𝒜t

⟨a, θ⟩ |𝒜t] ∀θ ∈ Θ

𝒳 = {g(θ) |θ ∈ Θ}

Known distribution
Reduction

Learner

 Use LB Alg
 to approximate
drawing action from

θ⋆
𝒳

Reduction

Environment

xt = g(θt) ∈ 𝒳

Learner

Reduction

Environment

xt = g(θt) ∈ 𝒳

Reduction: use but play action θt at ∈ 𝒜t

at = arg max
z∈𝒜t

⟨z, θt⟩

 Use LB Alg
 to approximate
drawing action from

θ⋆
𝒳

Learner Environment

Reduction

rt = ⟨at, θ⋆⟩ + ηt

Learner Environment

Reduction : provide to learnerrt

Reduction

rt
rt = ⟨at, θ⋆⟩ + ηt

Learner Environment

Reduction : provide to learnerrt

rt
rt = ⟨at, θ⋆⟩ + ηt

rt = ⟨g(θt), θ⋆⟩ + η′ t

Assume that
was generated by playing

rt
g(θt)

Reduction

rt = ⟨g(θt), θ⋆⟩ + η′ t

1) Reward indeed can be expressed as:

Main proof idea

|RL
T − RI

T | = O(T log T) w.h.p.
Theorem:

rt = ⟨g(θt), θ⋆⟩ + η′ t

1) Reward indeed can be expressed as:

Main proof idea

arg max
x∈𝒳

⟨x, θ⋆⟩ = g(θ⋆) |RL
T − RI

T | = O(T log T) w.h.p.

2) Difference between regrets of the two instances is not large:

|RL
T − RI

T | = O(T log T) w.h.p.
Theorem:

gm(θ) =
1
τm

τm

∑
t=1

arg max
a∈𝒜t

⟨a, θ⟩
τm = em, m = 1,⋯, log T

Unknown Distribution: empirically estimate X

Epoch 1
𝒳1

Epoch 2
𝒳2

Epoch log T
𝒳log T

τlog Tτ2τ1

Unknown Distribution: empirically estimate X

Misspecified instanceμθt
≠ ⟨gm(θt), θ⋆⟩ ⚠

Epoch 1
𝒳1

Epoch 2
𝒳2

Epoch log T
𝒳log T

gm(θ) =
1
τm

τm

∑
t=1

arg max
a∈𝒜t

⟨a, θ⟩
τm = em, m = 1,⋯, log T

τlog Tτ2τ1

 μa = ⟨a, θ⋆⟩ + f(a),
| f(a) | ≤ ϵ

Misspecified linear bandits

∥g(θ) − gm(θ)∥2 = O(d/τ)

Main proof idea

1) Misspecification is small:

(∀θ ∈ Θ?)

|RL
T − RI

T | = O(T log T) w.h.p.
Theorem:

Main proof idea

∥g(θ) − gm(θ)∥2 = O(d/τ) ∀θ ∈ ΘD

∀θ ∈ Θ∃θ′ ∈ ΘD : ∥θ − θ′ ∥2 ≤ 1/T

1) Misspecification is small:

2) θ⋆ ∈ ΘD?
 is not smoothg

|RL
T − RI

T | = O(T log T) w.h.p.
Theorem:

Main proof idea

1) Misspecification is small:

2) Discretized set contains a good action

 is smooth in a neighborhood of g θ⋆

∥g(θ) − gm(θ)∥2 = O(d/τ) ∀θ ∈ ΘD

∀θ ∈ Θ∃θ′ ∈ ΘD : ∥θ − θ′ ∥2 ≤ 1/T

|RL
T − RI

T | = O(T log T) w.h.p.
Theorem:

Literature Ours

Rt = O(d T log T) w.h.p.

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits." Advances in
neural information processing systems 24 (2011).
Li, Yingkai, et al. "Tight regret bounds for infinite-armed linear contextual bandits." International Conference on Artificial
Intelligence and Statistics. PMLR, 2021.

Results

Rt = O(d T log T) w.h.p.

Rt = O(d T log Tpoly(log log T)) exp.

Limited number of policy switches at
preselected time instances

Results: batch learning

Batch 1 Batch 2 Batch N

Literature Ours

Rt = O(d T log T log log T) w.h.p.

#batches = O(log log T) #batches = O(log log T)

Ruan, Yufei, Jiaqi Yang, and Yuan Zhou. "Linear bandits with limited adaptivity and learning distributional optimal design."
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

Results: batch learning

For contexts generated from a distribution

Rt = O(d T log d log Tpoly(log log T)) exp.

Literature Ours

 amount of misspecificationϵ :

Foster, Dylan J., et al. "Adapting to misspecification in contextual bandits." Advances in Neural Information Processing
Systems 33 (2020): 11478-11489.

Results: misspecified setting

Rt = O(d T log T + ϵ dT) in exp. Rt = O(d T log T + ϵ dT log T) w.h.p.

Learner Environment

r̃t rt

Adversary

Results: adversarial corruption

Literature Ours

Rt = Õ(d T + d3/2C) w.h.p.

 amount of corruptionC :

Foster, Dylan J., et al. "Adapting to misspecification in contextual bandits." Advances in Neural Information Processing
Systems 33 (2020): 11478-11489.

Results: adversarial corruption

Rt = Õ(d4.5 T + d4C) w.h.p.

θ⋆ = [μ1, ⋯, μs,0,0…,0]T

Results: s-sparse θ

Literature Ours

Rt = O(dsT log T) w.h.p.

Abbasi-Yadkori, Yasin, David Pal, and Csaba Szepesvari. "Online-to-confidence-set conversions and application to sparse
stochastic bandits." Artificial Intelligence and Statistics. PMLR, 2012.

Results: s-sparse θ

Rt = O(dsT log T) w.h.p.

Ours

Rt = O(dsT log T log log T) w.h.p.

#batches = O(log log T)

Results: batch learning with s-sparse θ

Users

Learner

Users
Users

communication constraints ⚠

Distributed contextual bandits

Distributed contextual bandits

Reward compression:

Context compression:

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International
Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without
Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Distributed contextual bandits

Reward compression:

Context compression:

 bits are enough≈ 3

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International
Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without
Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Distributed contextual bandits

Reward compression:

Context compression:

 bits are enough≈ 3

No need to share if context distribution is known!

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International
Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without
Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Learner

 Use LB Alg
 to approximate
drawing action from

θ⋆
𝒳

Reduction

xt = g(θt) ∈ 𝒳

Users

 is known𝒳

Learner

Reduction

xt = g(θt) ∈ 𝒳

 Use LB Alg
 to approximate
drawing action from

θ⋆
𝒳

 is known𝒳

Observe context and use to play
𝒜t θt
at = arg max

z∈𝒜t

⟨z, θt⟩

θt

Users

Learner

Reduction

rt = ⟨at, θ⋆⟩ + ηt

Users

Learner

rt
rt = ⟨at, θ⋆⟩ + ηt

rt = ⟨g(θt), θ⋆⟩ + η′ t

Assume that
was generated by playing

rt
g(θt)

Reduction

Users

Complexity

𝒳m = {gm(θ) |θ ∈ ΘD} ⚠

Complexity

𝒳m = {gm(θ) |θ ∈ ΘD}

• Linear optimization and linear regression oracles are sufficient!

Ito, Shinji, et al. "Oracle-efficient algorithms for online linear optimization with bandit feedback." Advances in Neural Information
Processing Systems 32 (2019).

Complexity

𝒳m = {gm(θ) |θ ∈ ΘD}

• Linear optimization and linear regression oracles are sufficient!

• Given , we can solve arg max
a∈𝒜t

⟨a, θ⟩ arg max
x∈𝒳m

⟨x, θ⟩

Ito, Shinji, et al. "Oracle-efficient algorithms for online linear optimization with bandit feedback." Advances in Neural Information
Processing Systems 32 (2019).

Any Questions?

