

香港中文大學
The Chinese University of Hong Kong

On Task Aware Compression： Common Information Dimension and Contextual Bandit Learning

Osama A．Hanna，Christina Fragouli

01 Common Information Dimension

Hanna, Osama, Xinlin Li, Suhas Diggavi, and Christina Fragouli. "Common Information Dimension." ISIT 2023.

Applications

Key generation in Cryptography

Hypothesis testing

Multi-modal representation learning

Common Information: Wyner

$$
C_{\text {Wyner }}\left(X_{1}, X_{2}\right):=\min _{P_{W} P_{X_{1} \mid W} P_{X_{2} \mid W}: P_{X_{1} X_{2}}=\pi_{X_{1} X_{2}}} I\left(X_{1}, X_{2} ; W\right)
$$

X_{1}, X_{2} : random vectors (sources)
W : common randomness

Common Information: Wyner

$$
C_{\text {Wyner }}\left(X_{1}, X_{2}\right):=\min _{P_{P_{W} P_{X_{1} \mid W} P_{X_{2} \mid w}: P_{X_{1} X_{2}}=\pi_{X_{1} X_{2}}} I\left(X_{1}, X_{2} ; W\right)}
$$

- Can be generalized to n sources

Common Information: Wyner

$$
C_{\text {Wyner }}\left(X_{1}, X_{2}\right):=\min _{P_{W} P_{X_{1} \mid W} P_{X_{2} \mid w}: P_{X_{1} X_{2}}=\pi_{X_{1} X_{2}}} I\left(X_{1}, X_{2} ; W\right)
$$

- Can be generalized to n sources
- Multiple interpretations, e.g., distributed simulation

Common Information: Common Entropy

G. R. Kumar, C. T. Li, and A. El Gamal, "Exact common information," in 2014 IEEE International Symposium on Information Theory. IEEE, 2014, pp. 161-165.

Common Information: Gacs-Korner

- distributed randomness extraction

$$
C_{\mathrm{GK}}\left(X_{1}, X_{2}\right):=\max _{f, g: f\left(X_{1}\right)=g\left(X_{2}\right)} H\left(f\left(X_{1}\right)\right)
$$

Common Information Can be Infinite?

- $X_{1}, X_{2} \in \mathbb{R}, X_{1} \sim \mathcal{N}(0,1)$ and $X_{1}=X_{2}$ almost surely
- $C\left(X_{1}, X_{2}\right)=\infty$

Common Information Can be Infinite?

- $X_{1}, X_{2} \in \mathbb{R}, X_{1} \sim \mathcal{N}(0,1)$ and $X_{1}=X_{2}$ almost surely
- $C\left(X_{1}, X_{2}\right)=\infty$
- What if $X_{1}, X_{2} \in \mathbb{R}^{100}$?
- $C\left(X_{1}, X_{2}\right)=\infty$

Common Information Can be Infinite?

- $X_{1}, X_{2} \in \mathbb{R}, X_{1} \sim \mathcal{N}(0,1)$ and $X_{1}=X_{2}$ almost surely
- $C\left(X_{1}, X_{2}\right)=\infty$
- What if $X_{1}, X_{2} \in \mathbb{R}^{100}$?
- $C\left(X_{1}, X_{2}\right)=\infty$

How to measure the different complexities for the above cases?

Common Information Dimension (CID)

(First Attempt):

$$
\begin{gathered}
d\left(X_{1}, X_{2}\right)=\min \left\{d_{W} \mid W \in \mathscr{W}\right\} \\
\mathscr{W}=\left\{W \in \mathbb{R}^{d_{W}}\left|\exists g:\left(X_{1}, X_{2}\right) \mapsto W, \quad X_{1} \Perp X_{2}\right| W\right\}
\end{gathered}
$$

X_{1}, X_{2} : random vectors
W : common randomness (vector)
d_{W} : \#coordinates
$X_{1} \Perp X_{2} \mid W: X_{1}, X_{2}$ conditionally independent given W

Common Information Dimension (CID)

(First Attempt):

$$
\begin{gathered}
d\left(X_{1}, X_{2}\right)=\min \left\{d_{W} \mid W \in \mathscr{W}\right\} \\
\mathscr{W}=\left\{W \in \mathbb{R}^{d_{W}}\left|\exists g:\left(X_{1}, X_{2}\right) \mapsto W, \quad X_{1} \Perp X_{2}\right| W\right\}
\end{gathered}
$$

X_{1}, X_{2}, W : vectors
d_{W} : \#coordinates
$X_{1} \Perp X_{2} \mid W: X_{1}, X_{2}$ conditionally independent given W

Issue: $\exists f: \mathbb{R} \leftrightarrow \mathbb{R}^{n}, d\left(X_{1}, X_{2}\right)=$

Common Information Dimension (CID)

$$
\begin{gathered}
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=\min \left\{d_{W} \mid W \in \mathscr{W}_{\mathscr{F}}\right\} \\
\mathscr{W}_{\mathscr{F}}=\left\{W\left|\exists g:\left(X_{1}, X_{2}\right) \mapsto W, \quad X_{1} \Perp X_{2}\right| W, \quad g \in \mathscr{F}\right\}
\end{gathered}
$$

X_{1}, X_{2}, W : vectors
d_{W} : \#coordinates
$X_{1} \Perp X_{2} \mid W: X_{1}, X_{2}$ conditionally independent given W

Common Information Dimension (CID)

Definition (CID):

$$
\begin{gathered}
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=\min \left\{d_{W} \mid W \in \mathscr{W}_{\mathscr{F}}\right\} \\
\mathscr{W}_{\mathscr{F}}=\left\{W\left|\exists V, g:\left(X_{1}, X_{2}\right) \mapsto W, \quad X_{1} \Perp X_{2}\right|(V, W), \quad g \in \mathscr{F}, \quad H(V)<\infty\right\}
\end{gathered}
$$

Renyi Common Information Dimension (RCID)

Rényi Dimension:

$$
d^{R}(W)=\lim _{m \rightarrow \infty} \frac{H\left(\langle W\rangle_{m}\right)}{\log m}
$$

$$
W: \text { vector, }\left\langle W_{i}\right\rangle_{m}=\frac{\left\lfloor m W_{i}\right\rfloor}{m}
$$

Renyi Common Information Dimension (RCID)

Rényi Dimension:

$$
d^{R}(W)=\lim _{m \rightarrow \infty} \frac{H\left(\langle W\rangle_{m}\right)}{\log m}
$$

$$
W: \text { vector, }\left\langle W_{i}\right\rangle_{m}=\frac{\left\lfloor m W_{i}\right\rfloor}{m}
$$

Definition (RCID):

$$
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=\min \left\{d^{R}(W) \mid W \in \mathscr{W}_{\mathscr{F}}\right\}
$$

Gacs-Korner Common Information Dimension (GKCID)

Definition (GKCID):

$$
d_{\mathscr{F}}^{G K}\left(X_{1}, X_{2}\right)=\sup _{W=f_{1}\left(X_{1}\right)=f_{2}\left(X_{2}\right), f_{i} \in \mathscr{F}} d^{R}(W)
$$

Gacs-Korner Common Information Dimension (GKCID)

Definition (GKCID):

$$
d_{\mathscr{F}}^{G K}\left(X_{1}, X_{2}\right)=\sup _{W=f_{1}\left(X_{1}\right)=f_{2}\left(X_{2}\right), f_{i} \in \mathscr{F}} d^{R}(W)
$$

CID for Gaussian Sources

Assumptions

- $X_{1}, X_{2} \sim \mathcal{N}\left(\mu, \Sigma_{X_{1}, X_{2}}\right)$
- $\mathscr{F}=\left\{f: \mathbb{R}^{d_{X_{1}}+d_{X_{2}}} \rightarrow d_{W} \mid f\left(X_{1}, X_{2}\right)=A\left[X_{1} X_{2}\right]^{\top}\right.$ for some matrix $\left.A\right\}$

$$
X_{1}, X_{2}, W: \text { vectors }
$$

CID for Two Gaussian Sources

Theorem:

If $\left[X_{1}, X_{2}\right.$] is a jointly Gaussian random vector, \mathscr{F} is the class of linear function

$$
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=\operatorname{rank}\left(\Sigma_{X_{1}}\right)+\operatorname{rank}\left(\Sigma_{X_{2}}\right)-\operatorname{rank}\left(\Sigma_{X_{1}, X_{2}}\right)
$$

X_{1}, X_{2} : vectors

$$
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=\min \left\{d_{W} \mid W \in \mathscr{W}_{\mathscr{F}}\right\}
$$

CID for Two Gaussian Sources: proof sketch

- WLOG assume $\Sigma_{X_{1}}, \Sigma_{X_{2}}$ are full rank
- $a^{\top} X_{1}+b^{\top} X_{2}=0$ almost surely $\Longleftrightarrow\left[a^{\top} b^{\top}\right] \Sigma_{X_{1}, X_{2}}=0$
- Find the null space of $\Sigma_{X_{1}, X_{2}}$, namely $N=\left[N_{X_{1}} N_{X_{2}}\right]$ with $N \Sigma_{X_{1}, X_{2}}=0$
- $N_{X_{1}} X_{1}=-N_{X_{2}} X_{2}$ almost surely

CID for Two Gaussian Sources: proof sketch

Achievability

- $\Sigma_{X_{1}, X_{2}}$ is full rank $\Longrightarrow d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=0$
- Recall: $N_{1}=-N_{2}$

$$
N_{1}=N_{X_{1}} X_{1}, N_{2}=N_{X_{2}} X_{2}
$$

- Conditioned on $W=N_{1},\left[X_{1}, X_{2}\right]$ effectively has full rank covariance matrix
- $\operatorname{CID} \leq d_{N_{1}}$

CID for Two Gaussian Sources: proof sketch

Converse

- N_{1} is a deterministic function of every $(V, W): X_{1} \Perp X_{2} \mid(V, W)$
- N_{1} can be obtained from W by a linear transformation

CID for Two Gaussian Sources: proof sketch

Converse

- N_{1} is a deterministic function of every $(V, W): X_{1} \Perp X_{2} \mid(V, W)$
- N_{1} can be obtained from W by a linear transformation
- N_{1} has full rank covariance matrix
- $d_{W} \geq$ \#rows of $N_{X_{1}}$

RCID, GKCID for Two Gaussian Sources

Theorem:

If $\left[X_{1}, X_{2}\right]$ is a jointly Gaussian random vector, \mathscr{F} is the class of linear function

$$
d_{\mathscr{F}}\left(X_{1}, X_{2}\right)=d_{\mathscr{F}}^{R}\left(X_{1}, X_{2}\right)=d_{\mathscr{F}}^{G K}\left(X_{1}, X_{2}\right)
$$

X_{1}, X_{2} : vectors

$$
\begin{aligned}
d_{\mathscr{F}}^{R}\left(X_{1}, X_{2}\right) & =\min \left\{d^{R}(W) \mid W \in \mathscr{V}_{\mathscr{F}}\right\} \\
d_{\mathscr{F}}^{G K}\left(X_{1}, X_{2}\right) & =\sup _{W=f_{1}\left(X_{1}\right)=f_{2}\left(X_{2}\right), f_{i} \in \mathscr{F}} d^{R}(W)
\end{aligned}
$$

CID for N Gaussian Sources

Theorem:

If $\left[X_{1}, \cdots, X_{n}\right]$ is a jointly Gaussian random vector, \mathscr{F} is class of linear function

$$
\begin{aligned}
& d_{\mathscr{F}}\left(X_{1}, \cdots, X_{n}\right)=\sum_{i=1}^{n} \operatorname{rank}\left(\Sigma_{-i}\right)-(n-1) \operatorname{rank}(\Sigma) \\
& d_{\mathscr{F}}\left(X_{1}, \cdots, X_{n}\right)=d_{\mathscr{F}}^{R}\left(X_{1}, \cdots, X_{n}\right) \geq d_{\mathscr{F}}^{G K}\left(X_{1}, \cdots, X_{n}\right)
\end{aligned}
$$

CID for N Gaussian Sources: proof sketch

Achievability

Converse

CID for N Gaussian Sources: proof sketch

Achievability

- Find $Z=\left[Z_{1}, \cdots, Z_{n}\right]$ s.t. conditioned on Z, the covariance matrix of X is effectively full rank
- Intuitively: Z_{i} captures the information that X_{i} contains about X_{i+1}, \cdots, X_{n} which X_{1}, \cdots, X_{i-1} do not contain

Converse

CID for N Gaussian Sources: proof sketch

Achievability

- Find $Z=\left[Z_{1}, \cdots, Z_{n}\right]$ s.t. conditioned on Z, the covariance matrix of X is effectively full rank
- Intuitively: Z_{i} captures the information that X_{i} contains about X_{i+1}, \cdots, X_{n} which X_{1}, \cdots, X_{i-1} do not contain

Converse

- Z is deterministic function of every $(V, W): X_{1} \Perp \cdots \Perp X_{n} \mid(V, W)$

CID for N Gaussian Sources

Theorem:

If $\left[X_{1}, \cdots, X_{n}\right]$ is a jointly Gaussian random vector, \mathscr{F} is class of linear function

$$
\begin{aligned}
& d_{\mathscr{F}}\left(X_{1}, \cdots, X_{n}\right)=\sum_{i=1}^{n} \operatorname{rank}\left(\Sigma_{-i}\right)-(n-1) \operatorname{rank}(\Sigma) \\
& d_{\mathscr{F}}\left(X_{1}, \cdots, X_{n}\right)=d_{\mathscr{F}}^{R}\left(X_{1}, \cdots, X_{n}\right) \geq d_{\mathscr{F}}^{G K}\left(X_{1}, \cdots, X_{n}\right)
\end{aligned}
$$

Example with GKCID < CID

- $X_{1}, X_{2}, X_{3} \sim \mathcal{N}(0,1)$ and $X_{1}=X_{2}$ almost surely
- $X_{3} \Perp\left(X_{1}, X_{2}\right)$

Example with GKCID < CID

- $X_{1}, X_{2}, X_{3} \sim \mathcal{N}(0,1)$ and $X_{1}=X_{2}$ almost surely
- $X_{3} \Perp\left(X_{1}, X_{2}\right)$
- $\operatorname{GKCID}=0$ while CID $=1$

Future Work

How to compute CID, RCID, GKCID for general distributions and more general classes of function?

ANY QUESTIONS?

02 Contextual Bandit Learning

Hanna, Osama, Lin F. Yang, and Christina Fragouli. "Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear Bandit Algorithms." COLT 2023.

Multi Arm Bandits

Plays an arm

Multi Arm Bandits

Plays an arm

Multi Arm Bandits

Plays an arm
Receives a reward

Multi Arm Bandits

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \\
& r_{t}=\mu_{a_{t}}+\eta_{t} \\
& r_{0} \\
& \left(a_{1}=1, r_{1}\right)
\end{aligned}
$$

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \\
& r_{t}=\mu_{a_{t}}+\eta_{t}
\end{aligned}
$$

$$
\text { Arm } 1
$$

$$
\left(a_{1}=1, r_{1}\right) \quad\left(a_{2}=1, r_{2}\right)
$$

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \\
& r_{t}=\mu_{a_{t}}+\eta_{t} \\
& a_{t}=f\left(H_{t}\right) \quad r_{1}
\end{aligned}
$$

Arm K

Multi Arm Bandits

Find which arm, among a set of choices, will provide on average the best reward

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \\
& r_{t}=\mu_{a_{t}}+\eta_{t} \\
& a_{t}=f\left(H_{t}\right) \quad \begin{array}{r}
r_{1} \\
\left(a_{1}=1 . r_{r}\right)
\end{array} \\
& \hline \text { Am }
\end{aligned}
$$

Average Regret: $\quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}} \mu_{a}-\mu_{a_{t}}\right)$

Linear Bandits

Reward is a linear function of an unknown coefficient vector θ_{\star}

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \subseteq \mathbb{R}^{d} \\
& \mu_{a_{t}}=\left\langle a_{t}, \theta_{\star}\right\rangle, a_{t} \in \mathbb{R}^{d} \\
& r_{t}=\mu_{a_{t}}+\eta_{t}
\end{aligned}
$$

$$
\text { Regret: } \quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle\right)
$$

Contextual Linear Bandits

Reward is a linear function of an unknown coefficient vector θ_{\star}

Learner

$$
\begin{aligned}
& a_{t} \in \mathscr{A} \\
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}
\end{aligned}
$$

Context for recommender systems:

gender, age, geographical location, past behavior,....

Regret: $\quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle\right)$

Contextual Linear Bandits

Reward is a linear function of an unknown coefficient vector θ_{\star}
$a_{t} \in \mathscr{A}$
known c_{t}, ϕ
$r_{t}=\left\langle\phi\left(c_{t}, a_{t}\right), \theta_{\star}\right\rangle+\eta_{t}$
Learner

Context for recommender systems:
gender, age, geographical location, past behavior,....

$$
\text { Regret: } \quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}}\left\langle\phi\left(c_{t}, a\right), \theta_{\star}\right\rangle-\left\langle\phi\left(c_{t}, a_{t}\right), \theta_{\star}\right\rangle\right)
$$

Contextual Linear Bandits

Reward is a linear function of an unknown coefficient vector θ_{\star}

$$
\begin{aligned}
& a_{t} \in \mathscr{A}_{t} \\
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}
\end{aligned}
$$

 Context for recommender systems:

gender, age, geographical location, past behavior,....

$$
\text { Regret: } \quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}_{t}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle\right)
$$

Challenge

Solving contextual linear bandits can be harder than solving linear bandits

 Context for recommender systems:

gender, age, geographical location, past behavior,....

$$
\text { Regret: } \quad R_{T}=\sum_{t=1}^{T}\left(\max _{a \in \mathscr{A}_{t}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle\right)
$$

Comparing Literature Results

	Linear	Contextual
Basic setup	$O(d \sqrt{T \log T})$ w.h.p.	$O(d \sqrt{T} \log T)$ w.h.p.
Batched Algorithms	$O(d \sqrt{T \log T} \log \log T)$ w.h.p.	$O(d \sqrt{T \log d \log T} \log \log T)$ exp.
Adversarial corruption	$\tilde{O}\left(d \sqrt{T}+d^{1.5} C\right)$ w.h.p.	$\tilde{O}\left(d^{4.5} \sqrt{T}+d^{4} C\right)$ w.h.p.

Regret bound B_{T} in exp.: $\mathbb{E}\left[R_{T}\right] \leq B_{T}$
 C : amount of corruption

 W.h.p.: $R_{T} \leq B_{T}$ w.p. at least $1-1 / T$
Building Intuition

Linear Bandits goal: estimate optimal coefficient vector θ_{\star}

$$
\begin{aligned}
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
& \alpha_{t} \in \mathscr{A}
\end{aligned}
$$

Building Intuition

Linear Bandits goal: estimate optimal coefficient vector θ_{\star}

$$
\begin{aligned}
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
& \alpha_{t} \in \mathscr{A}
\end{aligned}
$$

Estimate θ_{\star} along actions directions

Building Intuition

Linear Bandits goal: estimate optimal coefficient vector θ_{\star}

$$
\begin{aligned}
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
& \alpha_{t} \in \mathscr{A}
\end{aligned}
$$

Estimate θ_{\star} along actions directions

Building Intuition

Contextual Linear Bandits: directions change

$$
r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}
$$

$$
\alpha_{t} \in \mathscr{A}_{t}
$$

$$
t=1
$$

Building Intuition

Contextual Linear Bandits: directions change

$$
\begin{aligned}
& r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
& \alpha_{t} \in \mathscr{A}_{t}
\end{aligned}
$$

$$
t=2
$$

Main result

If the context is generated from a distribution, we can reduce Contextual Linear Bandits to Linear Bandits

Our results

Theorem 1:

For any contextual linear bandit instance I with known context distribution \mathscr{D}, there exists (constructively) a linear bandit instance L with the same action dimension, and any algorithm solving L solves I with the same worst-case regret bound as L.

Our results

Theorem 2:

For any contextual linear bandit instance I with unknown context distribution \mathscr{D}, there exist (constructively) $\log T$ linear bandit instances $L_{1}, \ldots, L_{\log T}$ with $\tilde{O}\left(1 / \sqrt{T}_{i}\right)$ misspecification, and any algorithm solving $L_{1}, \ldots, L_{\log T}$ solves I with the same worst-case regret bound.

Reduction

Use a Linear Bandit Algorithm to learn the optimal θ_{\star} for the Contextual Bandit

Instead of solving

$$
\begin{gathered}
r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
R_{T}=\sum_{t=1}^{T} \max _{a \in \mathscr{A}_{t}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle
\end{gathered}
$$

- $a_{t} \in \mathscr{A}_{t}$: context changes with t

Reduce to

$$
\begin{gathered}
r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}^{\prime} \\
R_{T}=\sum_{t=1}^{T} \max _{a \in \mathscr{X}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle \\
\cdot a_{t} \in \mathcal{X}: \text { fixed } \forall t
\end{gathered}
$$

Reduction

We will use any standard LB algorithm
(say $\mathbf{A l g}$) to approximate θ_{\star} with action set \mathscr{X}

Instead of solving

$$
\begin{gathered}
r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t} \\
R_{T}=\sum_{t=1}^{T} \max _{a \in \mathscr{A}_{t}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle
\end{gathered}
$$

- $a_{t} \in \mathscr{A}_{t}$: context changes with t

Reduce to

$$
r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}^{\prime}
$$

$$
R_{T}=\sum_{t=1}^{T} \max _{a \in \mathscr{X}}\left\langle a, \theta_{\star}\right\rangle-\left\langle a_{t}, \theta_{\star}\right\rangle
$$

- $a_{t} \in \mathcal{X}$: fixed $\forall t$

How to create the set of actions \mathscr{X}
Reduction for known distribution

$$
\begin{gathered}
g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \mathscr{D}}\left[\arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta \\
\mathscr{X}=\{g(\theta) \mid \theta \in \Theta\}
\end{gathered}
$$

Example

Assume two sets of actions
$g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \boldsymbol{D}}\left[\arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta$
$\Theta=\left\{\theta_{1}, \theta_{2}\right\}$

With probability 1/2

With probability $1 / 2$

Example

Assume two sets of actions

$g(\theta)=\mathbb{E}_{\mathscr{A}_{i} \sim \mathscr{D}}\left[\arg \max \langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta$ $a \in \mathscr{A}_{t}$

$\Theta=\left\{\theta_{1}, \theta_{2}\right\}$

With probability $1 / 2$

With probability $1 / 2$

Example

Assume two sets of actions

$g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \mathscr{D}}\left[\arg \max \langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta$ $a \in \mathscr{A}_{t}$

With probability $1 / 2$

With probability $1 / 2$

Example

Assume two sets of actions
$g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \boldsymbol{D}}\left[\arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta$
$\Theta=\left\{\theta_{1}, \theta_{2}\right\}$

With probability 1/2

With probability $1 / 2$

Example

Assume two sets of actions

$g(\theta)=\mathbb{E}_{\mathscr{A}_{i} \sim \mathscr{D}}\left[\arg \max \langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta$ $a \in \mathscr{A}_{t}$

With probability $1 / 2$

With probability $1 / 2$

Example

Assume two sets of actions

$$
g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \mathscr{D}}\left[\arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \forall \theta \in \Theta
$$

$\Theta=\left\{\theta_{1}, \theta_{2}\right\}$

$$
\mathscr{X}=\left\{g\left(\theta_{1}\right), g\left(\theta_{2}\right)\right\}
$$

Reduction

Known distribution

$$
\begin{gathered}
g(\theta)=\mathbb{E}_{\mathscr{A}_{t} \sim \mathscr{D}}\left[\arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle \mid \mathscr{A}_{t}\right] \quad \forall \theta \in \Theta \\
\mathscr{X}=\{g(\theta) \mid \theta \in \Theta\}
\end{gathered}
$$

Reduction

Reduction

Reduction: use θ_{t} but play action $a_{t} \in \mathscr{A}_{t}$

Reduction

Learner

\leftarrow

Environment

Reduction

Learner

Environment

Reduction : provide r_{t} to learner

Reduction

Main proof idea

Theorem:

$$
\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

1) Reward indeed can be expressed as:

$$
r_{t}=\left\langle g\left(\theta_{t}\right), \theta_{\star}\right\rangle+\eta_{t}^{\prime}
$$

Main proof idea

Theorem:

$$
\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

1) Reward indeed can be expressed as:

$$
r_{t}=\left\langle g\left(\theta_{t}\right), \theta_{\star}\right\rangle+\eta_{t}^{\prime}
$$

2) Difference between regrets of the two instances is not large:

$$
\arg \max _{x \in \mathcal{X}}\left\langle x, \theta_{\star}\right\rangle=g\left(\theta_{\star}\right) \longleftarrow\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

Unknown Distribution: empirically estimate X

$$
\tau_{m}=e^{m}, m=1, \cdots, \log T
$$

$$
g_{m}(\theta)=\frac{1}{\tau_{m}} \sum_{t=1}^{\tau_{m}} \arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle
$$

Unknown Distribution: empirically estimate X

$$
\tau_{m}=e^{m}, m=1, \cdots, \log T
$$

$$
g_{m}(\theta)=\frac{1}{\tau_{m}} \sum_{t=1}^{\tau_{m}} \arg \max _{a \in \mathscr{A}_{t}}\langle a, \theta\rangle
$$

Misspecified linear bandits

$$
\begin{gathered}
\mu_{a}=\left\langle a, \theta_{\star}\right\rangle+f(a), \\
|f(a)| \leq \epsilon
\end{gathered}
$$

Main proof idea

Theorem:

$$
\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

1) Misspecification is small:

$$
\left\|g(\theta)-g_{m}(\theta)\right\|_{2}=O(\sqrt{d / \tau}) \quad(\forall \theta \in \Theta ?)
$$

Main proof idea

Theorem:

$$
\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

1) Misspecification is small:

$$
\begin{gathered}
\left\|g(\theta)-g_{m}(\theta)\right\|_{2}=O(\sqrt{d / \tau}) \forall \theta \in \Theta_{D} \\
\forall \theta \in \Theta \exists \theta^{\prime} \in \Theta_{D}:\left\|\theta-\theta^{\prime}\right\|_{2} \leq 1 / T
\end{gathered}
$$

2) $\theta_{\star} \in \Theta_{D}$?
g is not smooth

Main proof idea

Theorem:

$$
\left|R_{T}^{L}-R_{T}^{I}\right|=O(\sqrt{T \log T}) \text { w.h.p. }
$$

1) Misspecification is small:

$$
\begin{gathered}
\left\|g(\theta)-g_{m}(\theta)\right\|_{2}=O(\sqrt{d / \tau}) \forall \theta \in \Theta_{D} \\
\forall \theta \in \Theta \exists \theta^{\prime} \in \Theta_{D}:\left\|\theta-\theta^{\prime}\right\|_{2} \leq 1 / T
\end{gathered}
$$

2) Discretized set contains a good action

$$
g \text { is smooth in a neighborhood of } \theta_{\star}
$$

Results

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits." Advances in neural information processing systems 24 (2011).
Li, Yingkai, et al. "Tight regret bounds for infinite-armed linear contextual bandits." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.

Results: batch learning

Limited number of policy switches at preselected time instances

Results: batch learning

Literature
$R_{t}=O(d \sqrt{T \log d \log T} p o l y(\log \log T))$ exp.
\#batches $=O(\log \log T)$

For contexts generated from a distribution

Ours

$$
R_{t}=O(d \sqrt{T \log T} \log \log T) \text { w.h.p. }
$$

$$
\text { \#batches }=O(\log \log T)
$$

Ruan, Yufei, Jiaqi Yang, and Yuan Zhou. "Linear bandits with limited adaptivity and learning distributional optimal design." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021.

Results: misspecified setting

Foster, Dylan J., et al. "Adapting to misspecification in contextual bandits." Advances in Neural Information Processing Systems 33 (2020): 11478-11489.

Results: adversarial corruption

Environment

Adversary

Results: adversarial corruption

Literature

$R_{t}=\tilde{O}\left(d^{4.5} \sqrt{T}+d^{4} C\right)$ w.h.p.
C : amount of corruption

Ours

$$
R_{t}=\tilde{O}\left(d \sqrt{T}+d^{3 / 2} C\right) \text { w.h.p. }
$$

Foster, Dylan J., et al. "Adapting to misspecification in contextual bandits." Advances in Neural Information Processing

Results: s-sparse θ

$$
\theta_{\star}=\left[\mu_{1}, \cdots, \mu_{s}, 0,0 \ldots, 0\right]^{T}
$$

Results: s-sparse θ

Abbasi-Yadkori, Yasin, David Pal, and Csaba Szepesvari. "Online-to-confidence-set conversions and application to sparse stochastic bandits." Artificial Intelligence and Statistics. PMLR, 2012.

Results: batch learning with s-sparse θ

Distributed contextual bandits

communication constraints !

Learner

Distributed contextual bandits

Reward compression:

Context compression:

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Distributed contextual bandits

Reward compression:

≈ 3 bits are enough

Context compression:

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Distributed contextual bandits

Reward compression:

≈ 3 bits are enough

Context compression:

No need to share if context distribution is known!

Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit using a few bits of communication." International Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from Distributed Users in Contextual Linear Bandits Without Sharing the Context." Advances in Neural Information Processing Systems 35 (2022): 11049-11062.

Reduction

Reduction

Reduction

Reduction

$$
r_{t}=\left\langle g\left(\theta_{t}\right), \theta_{\star}\right\rangle+\eta_{t}^{\prime}
$$

Complexity

$$
\mathscr{X}_{m}=\left\{g_{m}(\theta) \mid \theta \in \Theta_{D}\right\}
$$

Complexity

$\mathscr{X}_{m}=\left\{g_{m}(\theta) \mid \theta \in \Theta_{D}\right\}$

- Linear optimization and linear regression oracles are sufficient!

Ito, Shinji, et al. "Oracle-efficient algorithms for online linear optimization with bandit feedback." Advances in Neural Information
Processing Systems 32 (2019).

Complexity

$\mathscr{X}_{m}=\left\{g_{m}(\theta) \mid \theta \in \Theta_{D}\right\}$

- Linear optimization and linear regression oracles are sufficient!
. Given $\arg \max \langle a, \theta\rangle$, we can solve $\arg \max \langle x, \theta\rangle$ $a \in \mathscr{A}_{t}$ $x \in \mathscr{X}_{m}$

Ito, Shinji, et al. "Oracle-efficient algorithms for online linear optimization with bandit feedback." Advances in Neural Information Processing Systems 32 (2019).

ANY QUESTIONS?

